Inovasi Hasil Penelitian dan Pengabdian kepada Masyarakat dalam Menunjang Era Industri 4.0

Budidaya Putsa/Apel India di Daerah Pesisir

Novi Andayani, Septia Arista, Dian Safitri, Wening Kusuma Wardani*

Universitas Samawa, Jln.Raya By Pass Sering, Sumbawa Besar Provinsi Nusatenggara Barat Indonesia *Penulis Korespondensi: kusumawardaniwening@yahoo.co.id

ABSTRAK

Budidaya tanaman putsa di Indonesia masih dalam skala hobi, belum banyak yang melakukan budidaya dalam skala kebun, baru di Kelompok Tani Amertha Nadi yang mengebunkan Putsa/ Apel India / Bekul dalam bahasa Bali. Lokasi kebun putsa kelompok tani ini terletak di pesisir pantai Buleleng, Bali. Tujuan dari penulisan artikel ilmiah ini adalahuntuk mengetahui teknik budidaya dan tahapan pelaksanannya untuk meningkatkan produksi dan kualitas buah tanaman putsa di daerah pesisir. Metode pengambilan data data primer menggunakan teknik observasi dan praktek langsung di lapangan, serta wawancara dengan pembudidaya. Data sekunder diperoleh dari berbagai sumber dari internet,baik itu berupa jurnal maupun artikel ilmiah untuk melengkapi dan mendukung informasi-informasi yang telah didapatkan di lapang. Selanjutnya, data yang diperoleh dianalisis secara deskriptif dan mengevaluasi hasil kegiatan yang dilakukan. Kesimpulan yang diperoleh adalah Teknik budidaya yang dilakukan yaitu teknik pertanian sehat dengan menggunakan seminimal mungkin pestisida kimia. Adapun tahapan budidaya: pembersihan lahan, persiapan lahan (pembuatan lubang tanam, menanam tiang penyangga dari kayu jawa menyesuaikan tinggi pembudidaya),bibit terbaik menggunakan bibit sambung / grafting,melakukan penanaman saat sore hari di akhir musim hujan dilanjutkan membuat gundukan pada lubang tanam, membuat saluran drainase di bagian tengah dan sekeliling lahan budidaya, memasang para-para, menyiram dan memupuk tanaman sesuai dengan umur dan kebutuhan tanaman, melakukan pemangkasan, melakukan panen dan pacsa panen yang tepat.

Kata-Kata Kunci: Putsa, Budidaya, Produksi, Pesisir

PENDAHULUAN

Tanaman putsa (*Ziziphus mauritiana*) yang dikenal dengan nama apel India merupakan familia Rhammaceae dengan tinggi mencapai 15 m, memiliki perawakan semak, merupakan salah satu buah lokal India yang sudah dikenal sejak zaman dahulu. Buah ini telah menyebar di wilayah tropik dan sub tropik, termasuk Asia Tenggara (Dahiru,2010). Thailand merupakan negara yang mengembangkan buah putsa dalam skala kebun dan menjadi salah satu buah unggulan negara tersebut. Di Indonesia, budidaya tanaman ini hanya dilakukan di pekarangan rumah baru di Pulau Bali yang mengembangkan dalam skala kebun dengan harga jual antara Rp 30.000, - Rp 40.000/kg.

Tanaman putsa memiliki berbagai manfaat bagi kesehatan manusia, mengandung 30% gula, 2.5% protein, dan 12.8% karbohidrat. Putsa juga kaya akan vitamin C, vitamin A, beta karoten, dan lemak. Di India dan Cina buah ini sering dijadikan obat tradisional untuk menyembuhkan berbagai penyakit. Misalnya luka, penyakit lambung, paru, dan demam. Jika dicampur dengan cabai dan garam, putsa berkhasiat mengobati penyakit pencernaan dan empedu.Khasiat lainnya adalah menyembuhkan diare dan reumatik (Rahmadianti,2011).

Tanaman putsa dapat beradaptasi dengan berbagai kondisi lingkungan, lebih menyukai udara yang panas dengan curah hujan berkisar antara 125-2000 mm/thn. Suhu maksimum untuk tumbuh baik adalah 37-48 °C, dengan suhu minimun 7-13 °C. Tanaman putsa dapat ditanam pada dataran rendah (pesisr pantai) sampai dataran tinggi dengan ketinggian tempat 0 - 1500 m dpl, dengan kondisi tanah apapun. Indonesia memiliki banyak daerah dengan kategori daerah pesisir yang sangat cocok untuk dijadikan sebagai lahan budidaya putsa.

Tanaman putsa dikembangkan menggunakan teknik sambung pucuk dengan menggunakan batang bawah dari tanaman bidara (*Ziziphus jujuba*) banyak tumbuh liar di dataran rendah sampai pesisir pantai

Inovasi Hasil Penelitian dan Pengabdian kepada Masyarakat dalam Menunjang Era Industri 4.0

di Indonesia. Tanaman bidara satu genus dengan tanamn putsa, sehingga dapat disambung. Penanaman putsa menggunakan teknik sambung menjamin produksi maksimal karena batang bawah telah adaptif dengan kondisi alam Indonesia.

Untuk memaksimalkan produksi tanaman putsa, selain lingkungan yang sesuai, pembudidaya juga harus mengetahui teknologi budidaya tanaman putsa yang tepat, sehingga dapat berproduksi maksimal, yaitu menghasilkan buah yang banyak dengan kualitas yang baik. Berdasarkan hal di atas, maka penulisan artikel ini bertujuan untuk menjelaskan teknologi budidaya putsa yang tepat untuk meningkatkan pertumbuhan dan produksi tanaman putsa di daerah pesisir. Rumusan masalah dari penulisan ini adalah (1) Apa sajakah teknik budidaya dan tahapan pelaksanannya untuk meningkatkan produksi dan kualitas buah tanaman putsa di daerah pesisir.

Manfaat dari penulisan ini adalah sebagai sumber informasi tentang Teknologi Budidaya putsa di daerah pesisir, sehingga dapat menjadi referensi bagi pihak-pihak yang melakukan penelitian tentang budidaya putsa dan dapat menjadi salah-satu pedoman bagi masyarakat yang ingin melakukan budidaya putsa. Tujuan dari penulisan artikel ini adalah untuk mengetahui teknik budidaya dan tahapan pelaksanannya untuk meningkatkan produksi dan kualitas buah tanaman putsa di daerah pesisir.

METODE

Kegiatan ini di laksanakan di Kelompok Tani Amertha Nadi,berlokasi di Jalan Segara Banjar Dusun Banjar Ambengan Kecamatan Banjar Kabupaten Buleleng Provinsi Bali, dimana lahan budidaya terletak di daerah pesisir. Pelaksanaan kegiatan selama 2 bulan, yaitu mulai dari tanggal 13 Februari 2018 sampai dengan 8 April 2018. Bahan yang digunakan dalam kegiatan ini adalah: pupuk kotoran sapi, pestisida, bambu, kayu jawa, bibit putsa, pupuk urea, pupuk NPK, dan air. Sedangkan peralatan yang digunakan adalah: alat tulis, kamera, cangkul, ember, alat tugal, tiang penyangga, bambu, kawat bendrat BWG (Birmingham Wire Gauge) 14 dan BWG 16, tali, meteran, dan mesin semprot.

Metode pengambilan data data primer yang digunakan yaitu melakukan observasi dan praktek langsung di lapangan, selain itu melakukan wawancara dengan pembudidaya untuk memperoleh informasi-informasi yang kurang dimengerti saat praktek dilapang. Data skunder diperoleh dari berbagai sumber dari internet, baik itu berupa jurnal maupun artikel ilmiah untuk melengkapi dan mendukung informasi-informasi yang telah didapatkan di lapang. Selanjutnya, data yang diperoleh dianalisis secara deskriptif dan mengevaluasi hasil kegiatan yang dilakukan. Sehingga diperoleh pembahasan yang sesuai dengan kenyataan di lapang serta dapat menarik kesimpulan yang tepat.

HASIL DAN PEMBAHASAN

Teknologi Budidaya Tanaman Putsa

Dalam melakukan budidaya tanaman putsa (bekul) ada beberapa hal yang harus diperhatikan, yaitu menggunakan bibit sehat, menggunakan pupuk majemuk: pupuk NPK, memiliki peralatan budidaya yang memadai, agar kegiatan budidaya tidak terganggu, dan melakukan budidaya yang ramah lingkungan. Tahapan budidaya anggur dimulai dari tahap pemilihan lahan sampai proses panen dan pasca panen. Adapun tahapan budidaya tanaman putsa (bekul) dijabarkan pada tabel 1..

Tabel 1. Tahapan budidaya tanaman putsa (bekul)

No	Kegiatan	Uraian singkat
1.	Pemilihan	Pemilihan lahan meliputi ketinggian tempat, jenis tanah,
	Lahan	dan pH tanah.
2.	Pembibitan	Bibit tanaman putsa (bekul) didapatkan dari hasil grafting.
3.	Persiapan Dan	Persiapan lahan di lakukan dengan membersihkan lahan
	Pengolahan	dari gulma dan sisa panen sebelumnya, dilakukan dua cara
	Lahan	yaitu mekanik dan kimiawi. pengolahan lahan bertujuan
		agar struktur tanah menjadi baik sehingga tanah menjadi
		gembur, aerasi dan drainase lebih baik.
4.	Pemasangan	Hal-hal yang harus diperhatikan pada saat pemasangan
	Cagak (Tiang	cagak yaitu menentukan titik penananaman cagak, jumlah
	Penyangga)	cagak, tinggi jagak dan kedalaman penanaman cagak.
5.	Pembuatan	jarak antar drainase, panjang dan lebar saluran drainase.
	Saluran	
	Drainase	
6.	Pembuatan	Pembuatan lubang tanam tidak efektif jika dilihat dari segi
	Lubang Tanam	waktu dan dan biaya.
7.	Penanaman	Dilakukan pada sore hari agar tanaman tidak mengalami
		stagnasi.
8.	Pemasangan	Para-para dibuat menggunakan kawat ikat dengan ukuran
	Para-Para	Birmingham Wire Gauge) 14 (2,10 mm) dan BMW 16
		(1,60 mm).
9.	Pemeliharaan	Mencakup pengairan, pemupukan, pemangkasan,
		pengendalian hama dan penyakit.
10.	Panen	Tanaman putsa (bekul) di panen pada umur 70-75 hari dari
		terbentuknya pentil.
11.	Pasca Panen	Buah putsa (bekul) diklasifikasikan berdasarkan ukuran
		buah, yaitu grade A dan grade B.

a. Pemilihan Lahan

Lahan ideal untuk budidaya tanaman putsa (bekul) adalah lahan dengan ketinggian 0.5 - 1500 mdpl, dan untuk lahan yang berada sangat dekat dengan laut, tidak boleh terkena air laut. Tanaman putsa (bekul) tumbuh baik pada lahan kering (tegalan) maupun lahan sawah irigasi, juga tumbuh baik pada tekstur tanah gambut dan tanah dengan kadar air tinggi dengan drainase baik. Tanaman putsa menghendaki tanah yang mampu menyimpan air namun tidak menghendaki tanah yang tergenang, karena akan mempengaruhi pH tanah, tanah yang tergenag memiliki pH asam (< pH 6) sehingga dapat menghambat pertumbuhan tanaman putsa (bekul).

b. Pembibitan

Pembibitan tanaman putsa (bekul) tidak dilakukan oleh petani, para petani membeli bibit dari para penanngkar benih tanaman putsa (bekul). Memilih bibit putsa (bekul) sangat mudah, cukup dengan memilih bibit yang segar dan sehat secara visual. Bibit putsa (bekul dihasilkan dari graftting, dengan batang bawah dari tanaman lokal (bidara lokal) dan batang atas dari tanaman putsa (bekul). Sebelum bibit ditanam, bibit diberikan beberapa perlakuan yaitu melakukan penjemuran bibit dibawah sinar matahari langsung selama beberapa jam kemudian memberikan penaungan kembali. Melakukan tahapan ini selama beberapa hari dan setiap hari lama penjemuran harus ditambah. Apabila saat siang hari bibit tanaman tidak layu, hal tersebut menandakan bahwa bibit sudah

mampu beradaptasi dengan lingkungan dan siap dipindah tanam ke lapangan. Perlakuan ini dilakukan selama 7-10 hari.

Gambar 1. Bibit putsa (bekul) yang sudah berbuah. Sumber: Dokumentasi (2017)

c. Persiapan dan Pengolahan Lahan

Setelah pemilihan lahan, hal pertama yang harus dilakukan pada persiapan lahan adalah membersihkan lahan dari gulma dan sisa panen tanaman sebelumnya. Hal ini dilakukan untuk sanitasi lahan sekaligus mempermudah saat pengolahan lahan, sehingga mampu meminimalkan biaya yang dikeluarkan untuk pengolahan lahan.Ada dua cara untuk membersihkan lahan yaitu sebagai berikut:

Secara mekanik

Membersihkan lahan secara mekanik dilakukan menggunakan tenaga manusia baik itu menggunakan peralatan seterhana maupun dan mesin cangggih. Misalnya menggunakan parang, sabit, dan mesin pemotong rumput. Setelah dibersihkan, langkah selanjutnya adalah mengumpulkan gulma yang sudah kering dan melakukan pembakaran. Keuntungan dari cara ini adalah pentani dapat menjaga kelestarian lingkungan karena tidak menggunakan bahan kimia yang dapat mencemari lingkungan dan membunuh mahluk hidup yang ada pada area budidaya. Kerugianya adalah boros biaya, tenaga kerja, membutuhkan waktu yang lama, jika menggunakan mesin canggih harus mengeluarkan biaya untuk tenaga operasional, membeli mesin dengan haraga mahal, dan menambah biaya untuk bahan bakar.

• Secara kimiawi

Membersihkan lahan secara kimiawi dilakukan menggunakan bahan kimia berupa herbisida yang diaplikasikan dengan cara disemprotkan pada gulma sasaran. Herbisida bekerja secara kontak dan sistemik. Herbisisda kontak bekerja cepat mematikan jaringan tumubuhan yang trerkena cairan, biasanya 1 hari setelah penyemprotan hasilnya sudah terlihat. Sedangkan herbisida sistemik, bekerja secara perlahan degan merusak jaringan tumbuhan, setelah beberapa hari hasilnya baru terlihat. Oleh karena itu, herbisida sistemik dapat membuat lahan lebih lama bersih dari gulma jika dibandingkan dengan herbisisda kontak.

Sebelum melakukan penyemprotan hal penting yang harus diperhatikan adalah memilih herbisida sesuai dengan jenis gulma yang mendominasi lahan tesebut, misalnya gulma daun sempit menggunakan herbisida Basmilang dan gulma daun lebar menggunakan Run up. Waktu penyemprotan yang paling baik adalah pada saat cuaca cerah mulai dari jam 9 - jam 11. Apabila terlalu pagi, daun gulma masih tertutup embun sehingga herbisida akan bercampur dengan embun yang dapat menurunkan konsentrasi larutan dan apabila masih terdapat embun stomata daun juga belum membuka sehingga herbisisda tidak bisa diserap oleh daun gulma.

Penyemprotan diatas jam 11, stomata daun sudah tertutup untuk menghindari transpirasi berlebihan akibat intensitas cahaya matahari yang tinggi pada siang hari, apabila stomata daun telah tertutup, maka herbisisda tidak bisa masuk kedalam daun. Saat melakukan penyemprotan,

harus sesuai dengan dosis yang tertera pada label misalnya melarutkan 0,5 l herbisida kedalam 150 l air.

Keuntungan dari cara ini adalah lebih hemat waktu, tenaga kerja dan biaya. Kerugianya adalah memberikan dampak buruk bagi lingkungan, apabila digunakan secara berlebihan dan intensif. Disebabkan karena selain membunuh gulma, pada saat bersamaan juga membunuh organisme lain yang ada diareal budidaya. Bahan aktif yang terkandung dalam herbisida tidak mudah terurai sehingga dapat mencemari lingkungan dalam waktu yang lama. Menggunakan herbisisda harus sangat bijaksana, karena penggunaan yang berlebihan akan menyebabkan kerusakan yang parah dimasa depan yang akan ditanggung oleh generasi selanjutnya.

Pembersihan lahan dilakukan secara berkala baik secara kimiawi maupun secara mekanik, apabila lahan selalu dibersihkan maka hama akan menyerang tanaman budidaya karena inang atau tempat tinggalnya telah dibasmi.

Kemudian melakukan pengolahan lahan dengan cara penggemburan, bisa menggunakan cangkul maupun dibajak. Namun, untuk menghemat waktu dan biaya lebih baik menggunakan traktor untuk melakukan pembajakan. Biasanya untuk membajak 1 ha lahan dibutuhkan waktu selama 4 hari dengan biaya sekitar Rp. 2.000.000,00. Setelah pembajakan barulah membuat parit-parit yang digunakan sebagai saluran drainase, membuat saluran drainase dari awal bertujuan untuk mengalirkan kelebihan air pada lahan apabila turun hujan, agar bibit tanaman yang akan di tanam tidak tergenang. Semakin basah keadaan tanah, maka saluran drainase harus dibuat semakin dalam. Arah dari saluran drainasi harus disesuaikan dengan arah parit pembuangan air. Ukuran parit yang baik yaitu \pm 30 cm x \pm 30 cm, dengan jarak antara satu saluran drainase dengan yang lainnya berkisar 5-6 m.

d. Pemasangan Cagak (Tiang Penyangga)

Setelah persiapan dan pengolahan lahan selesai, barulah melakukan langkah selanjutnya, yaitu pemasangan cagak. Langkah-langkahnya sebagai berikut.

- Menentukan titik penanaman cagak dengan jarak 2,5 m antar cagak, yang dimulai dari bagian pinggir dengan cara membentangkan tali dari satu ujung ke ujung lainya, kemudian memberi tanda menggunakan anjer dari kayu atau bambu yang dipotong dengan panjang 50 cm dengan lebar 5 cm pada setiap jarak 2,5 m.
- Menancapkan cagak pada setiap titik cagak yang telah ditandai, hal yang harus diperhatikan adalah apabila menancapkan cagak pada sisi kanan tali, maka pemasangan cagak berikutnya berada pada posisi yang sama agar barisan cagak menjadi lurus dan bagian ujung jagak harus diruncingkan agar memudahkan saat menancapkan. Untuk merapatkan cagak bagian pinggir, perlu menyisipkan 1 cagak diantara 2 cagak yang telah dipasang sebelumnya atau bisa juga menambahkan 3 cagak. Penambahkan cagak sisipan, dapat juga dilakukan setelah pemasangan cagak tengah supaya tidak mengecoh saat menentukan titik cagak tengah.

Gambar 3. Cagak Pinggir

• Setelah pemasang cagak pinggir selesai langkah berikutnya yaitu menghitung jumlah cagak pada bagian kiri dan kanan untuk menentukan titik cagak bagain tengah. Apabila jumlahnya tidak sama misalnya sebelah kiri 18 cagak dan sebelah kanan 16 cagak, yang harus dilakukan

adalah merentangkan tali pada cagak ke 16 pada kedua sisi atau menyesuaikan pada jumlah cagak terkecil. Pada lahan yang tersisa, pemasangan cagak disesuaikan dengan sisa lahan, bisa ukuranya diperlebar maupun diperkecil.

- Untuk mementukan titik cagak bagian tengah, dapat dilakukan dengan menarik tali dari 4 penjuru sehingga membentuk pesegi dengan sisi 2,5 m. kemudian memberi tanda pada setiap persimpangan tali atau pada setiap sudut persegi.
- Setelah memberi tanda pada semua titik cagak, langkah selanjutnya yaitu menancapkan cagak. Panjang cagak yang masuk kedalam tanah adalah 15-20 cm dan tidak boleh terlau dalam. Jika terlau dalam cagak akan lebih banyak mati dan jika terlau dangkal cagak akan mudah roboh.
- Memberikan penyangga pada setiap cagak pinggir, untuk mempetkuat cagak, bila perlu menyisipkan cagak lainya untuk menambah kerapatkan cagak. Cagak pinggir berfungsi sebagai pagar sekaligus pemecah angin.

Gambar 4. Penyangga Cagak. Sumber: Dokumen (2017)

Cagak yang digunakan yaitu kayu santen (kayu jawa), karena berdasarkan pengalaman petani, batang tanaman putsa (bekul) yang merambat pada kayu santen yang masih hidup, akan tumbuh lebih besar dan subur dari pada batang tanaman yang merambat ditempat lain. Cagak yang hidup lebih baik dari pada cagak yang mati (seperti beton dan kayu mati). Tinggi cagak disesuaikan dengan tinggi pembudidaya, hal ini bertujuan agar petani tidak kesulitan saat melakukan perawatan tanaman dan panen. Apabila ada cagak yang mati, harus segera diganti. Umunya ukuran cagak setinggi 1, 80 – 2,25 m.

e. Pembuatan Saluran Drainase

Setelah pemasangan cagak selesai, tahapan selanjutya yaitu membuat saluran drainase dengan langkah sebagai berikut.

- Menentukan posisi saluran drainase dengan jarak 5 m antar saluran, yang harus diperhatikan adalah saluran drainase harus mengarah pada parit pembuangan air.
- Membentangkan tali pada posisi tengah diantara 2 barisann cagak dari satu sisi ke sisi lainya sesuai dengan arah drainase yang akan dibuat.
- Memasang beberapa anjer atau patok sepanjang tali.

Gambar 5. Membentangkan Tali di antara 2 Barisan Cagak Sumber: Dokumentasi (2017)

Gambar 6. Memasang Anjer di Sepanjang Tali Sumber: Dokumentasi (2017)

 Memindahkan tali, kemudian menggalih tanah dengan posisi anjer berada ditengah. Terlebih dahulu menyelesaikan menggali pada satu sisi baru kemudian menggali pada sisi lainya. Apabila menggali pada sisi kiri anjer maka tanah galian di letakkan di sekitar cagak yang berada pada sisi kiri anjer dan begitu pun sebaliknya. Saluran drainase memiliki lebar 30-40 cm dengan kedalaman 30 cm.

• Setelah selesai membuat saluran drainase untuk bagian tengah lahan, langkah selanjutnya yaitu membuat saluranmengelilingi lahan dengan ukuran dan tahapan yang sama.

Gambar 7. Menggali pada Salah Satu Sisi

Sumber: Dokumentasi (2017)

Gambar 8. Posisi Meletakkan Tanah Galian

mber: Dokumentasi (2017)

f. Pembuatan Lubang Tanam

Setelah selesai pemasangan cagak dan pembuatan saluran drainase, tahap selanjutnya yaitu membuat lubang tanam dengan jarak 5 m x 5 m. Berdasarkan pengalaman petani, pembuatan lubang tanam tidak efektif jika dilihat dari segi waktu dan biaya. Menanam tanaman bidara (bekul) pada lubang tanam sama dengan menanan pada pot. Saat lubang tanam terpapar sinar matahari, dinding pada lubang tanam akan kering dan mengeras sehingga akar bibit anggur yang belum kuat tidak bisa keluar dari lubang tanam, akibatnya adalah pertumbuhan bibit terganggu, Karena lubang tanam tidak efektif cukup dengan membuat lubang tanam sesuai ukuran *polibag*.

Posisi lubang tanam yang paling baik adalah berada diantara 4 cagak. Hal ini bertujuan untuk memudahkan pemupukan dan penyiangan. Karena berada jauh dari cagak, membuat lubang pupuk akan lebih mudah tanpa mengenai perakaran ataupun tiang cagak dan pupuk tidak terserap oleh cagak.

Gambar 9. Posisi titik tanam (tampak depan)

Sumber: Dokumentasi (2017)

Gambar 10. Posisi titik tanam (tampak samping)

mber: Dokumentasi (2017)

Adapun rekomendasi pembuatan lubang tanam menurut SOP (*Standard Oprating Procedure*) Tanaman Bidara Dinas Pertanian Tanaman Pangan Provinsi Bali (2016), adalah sebagai berikut.

- Membersihkan lahan dari sisa tanaman dan sampah.
- Membuat lubang tanam pada titik yang telah ditentukan dengan jarak tanam 5 m x 10 m, dengan ukuran 25 cm x 25 cm x 25 cm.
- Pada saat pelubangan, memisahkan lapisan tanah atas dan lapisan tanah bawah agar tidak tercampur.

g. Penanaman

Apabila seluruh persiapan telah selesai, barulah bisa melakukan proses penanaman. Penanam yang baik dilakukan pada akhir musim hujan atau pada pertengahan April sampai awal Juni dan dilakukan pada sore hari, apabila penanaman dilakukan pada pagi hari, tanaman akan mengalami

transfirasi yang tinggi akibat sinar matahari yang terik terutama saat siang hari, hal ini diperparah dengan peningkatan suhu tanah dan air sehingga tanaman menjadi mudah stress dan akibatnya pertumbuhan tanaman bisa terganggu. Sedangkan apabila penanaman dilakukan pada sore hari (mulai dari jam 4 sore), sinar matahari sudah mulai meredup sehinnga sangat sedikit terjadi penguapan, saat menjelang sore sampai pagi terjadi penurunan suhu tanah dan air sehingga didalam tanah menjadi sejuk. Kondisi ini dapat meminimalkan tingakat stress tanaman sehingga tanaman dapat tumbuh dengan normal.

Sebelum memindahkan bibit tanaman kelapangan, bibit harus diberikan beberapa perlakuan yaitu melakukan penjemuran bibit dibawah sinar matahari langsung selama beberapa jam kemudian memberikan penaungan kembali. Melakukan tahapan ini selama beberapa hari dan setiap hari lama penjemuran harus ditambah. Apabila saat siang hari bibit tanaman tidak layu, hal tersebut menandakan bahwa bibit sudah mampu beradaptasi dengan lingkungan dan siap dipindah tanam ke lapangan. Biasanya melakukan tahapan ini selama 7-10 hari.

Penanaman dilakukan dengan menggali sedikit lubang pada titik tanam yang telah ditentukan seukuran polibag, menyobek polybag, dan memasukkan bibit secara hati-hati dalam posisis tegak. Menutup lubang dengan tanah galian lubang tanam dan menyiraman secukupnya.

menggunakan pola tanam berjejer yang dimana jarak tanam yang lebih lebar berlawanan dengan arah matahari.

h. Pemasangan Para-Para

Pemasangan para-para dapat dilakukan setelah penanaman atau saat tinggi tanaman bidara (bekul) hampir sama dengan tinggi cagak. Para-para dibuat menggunakan kawat ikat dengan ukuran BWG (*Birmingham Wire Gauge*) 14 (2,10 mm) dan BWG 16 (1,60 mm) dengan ketinggian yang disesuaikan dengan pembudidaya. Cara mementukan ketinggianya adalah dengan cara pembudidaya berdiri didekat cagak sambil mengangkat satu tangan, posisi pemasangan para-para sama dengan posisi pergelangan tangan.

Gambar 11. Perbandingan Kawat untuk Membuat Para-Para

Sumber: Dokumen (2017)

Gambar 12. Cara Menentukan Tinggi Para-Para

Sumber: Dokumen (2017)

Adapun langkah-langkah memasang para-para yaitu sebagai berikut.

- Memasang kawat penyangga (BWG 14) terlebih dahulu karena posisi penyangga selalu berada dibawah para-para. Fungsinya yaitu sebagai penopang tanaman saat berbuah.
- Cara memasang penyangga yaitu dengan membentangkan kawat dari satu sisi ke sisi yang berlawanan misalnya dari selatan ke utara, dan berada dalam satu barisan dengan cagak. Menyatukan kawat penyangga dengan cagak menggunakan ikatan dari kawat atau juga bisa menggunakan paku.
- Kemudian selesai memasang kawat penyangga dari arah selatan ke utara, maka selanjutnya yaitu memasang kawat penyangga dari arah timur ke barat.
- Langkah seanjutnya yaitu memasang kawat para-para di atas kawat penyangga, dengan cara mengikat kawat (BWG 16) pada cagak yang ditentukan sebagai awal pemasangan kawat.

Kemudian membentangkan kawat dari satu sisi ke sisi yang berlawanan misalnya dari selatan ke utara, hingga seluruh area tertutupi oleh kawat dengan jarak 40 cm antar kawat.

• Memasang kawat dari timur ke barat dengan posisi naik-turun pada kawat sebelumnya (utara-selatan) sehingga membentuk anyaman dengan jarak mata anyam 40 cm x 40 cm. Tetapi, kawat penyangga tidak boleh ikut teranyam.

KESIMPULAN

Kesimpulan yang diperoleh adalah Teknik budidaya yang dilakukan yaitu teknik pertanian sehat dengan menggunakan seminimal mungkin pestisida kimia. Adapun tahapan budidaya: pembersihan lahan, persiapan lahan (pembuatan lubang tanam, menanam tiang penyangga dari kayu jawa menyesuaikan tinggi pembudidaya), bibit terbaik menggunakan bibit sambung / grafting, melakukan penanaman saat sore hari di akhir musim hujan dilanjutkan membuat gundukan pada lubang tanam, membuat saluran drainase di bagian tengah dan sekeliling lahan budidaya, memasang para-para, menyiram dan memupuk tanaman sesuai dengan umur dan kebutuhan tanaman, melakukan pemangkasan, melakukan panen dan pacsa panen yang tepat.

DAFTAR PUSTAKA

Budiasa, Drs. I Made. 2017. Hasil Wawancara Tentang Budidaya Anggur. Kelompok Tani Anggur Amertha Nadi. Buleleng. Diwawancara tanggal 6 Maret 2017

Rahmadianti, Fitria. 2011. Jujube India, Obat Alami Anti Muntah dan Diare Foto: sleepenoug

Dahiru.2010. Ziziphus mauritiana Fruit Extract Inhibits Carbon Tetrachloride induced

Hepatotoxicity in Male Rats. Nigeria: Pakistan Journal of Nutrition Vol.9, No.10.

diakses pada tanggal 4 Januari 2017