APLIKASI PUPUK KANDANG SAPI DAN MULSA JERAMI DALAM MENINGKATKAN PERTUMBUHAN DAN HASIL TANAMAN EDAMAME (Glycine max L Merr)

P-ISSN: 2807-7369

E-ISSN: 2807-3835

Ieke Wulan Ayu^{1*}, Ade Mariyam Oklima², Rifal Andika³

1,2,3 Fakultas Pertanian Universitas Samawa
iekewulanayu002@gmail.com^{1*}, mariyamade85@gmail.com², rifalandika@gmail.com³

Abstrak

Penelitian ini bertujuan untuk mengetahui pengaruh pemberian pupuk kandang kororan sapi dan mulsa Jerami terhadap pertumbuhan dan hasil kedelai edamame (Glycine max L. Merr). Penelitian ini dilaksanakan di lahan tegalan Desa Moyo kecamatan Moyo Hilir Kabupaten Sumbawa Provinsi Nusa Tenggara Barat pada bulan April sampai Juni 2023. Penelitian ini menggunakan metode Rancangan Acak Kelompok (RAK) Faktorial terdiri dari dua faktor yaitu, faktor pertama adalam pupuk kandang sapi (S) dan faktor kedua mulsa jerami (M). Masing-masing perlakuan diulang 3 kali. Faktor pupuk kandang kotoran sapi terdiri dari 3 taraf, yaitu S0=0 kg pupuk kandang kotoran sapi, S1=18 kg/petak pupuk kandang kotoran sapi dan S2= 27 kg/petak pupuk kandang Kotoran sapi. Faktor mulsa jerami terdiri dari 3 taraf, yaitu: M0=0 kg/petak mulsa jerami, M1=5,4 kg/petak mulsa jerami dan M2=7,2 kg/petak mulsa jerami. Data analisis menggunakan Analisis Varians (Anova) pada taraf 5%. Hasil penelitian menunjukan pengaruh pemberian pupuk kandang kotoran sapi dengan mulsa jerami memberikan pengaruh nyata terhadap pertumbuhan tinggi tanaman pada umur 20,30 dan 40 hari setelah tanam (HST). Hasil terbaik jumlah daun yaitu pada perlakuan S1M2 (18 kg/petak pupuk kandang kotoran sapi dengan 7,2 kg/petak mulsa jerami). Perlakuan S2M2 (27 kg/petak pupuk kandang kotoran sapi dengan 7,2 kg/ petak mulsa jerami) berpengaruh nyata terhadap parameter jumlah polong per tanaman dan berat satu polong berisi per tanaman. Perlakuan S2M1 (27 kg/petak pupuk kandang kotoran sapi denagn 5,4 kg/petak mulsa jerami) memberikan hasil per hektar (5.56 ton/ha).

Kata kunci: Kedelai Edamame, Pupuk Kandang Sapi, Mulsa jerami

1. PENDAHULUAN

Kedelai merupakan salah satu komoditas pertanian yang banyak menjadi perhatian pemerintah, selain tingkat konsumsi masyarakat terhadap kedelai sangat besar, pemenuhan pasokan kedele masih mengandalkan negara lain, dengan impor kedelei setiap tahunnya meningkat. BPS (2021) menunjukkan bahwa selama tahun 2021 impor kedelai Indonesia mencapai 2,5 juta ton, naik 0,29% dibandingkan tahun 2020 yang sebanyak 2,47 juta ton. Tingginya impor kedelei disebabkan oleh tingginya permintaan untuk tahu dan tempe, yang diikuti oleh naiknya harga komoditas kedelei berbanding terbalik dengan produksi kedelei di Indonesia.

Kabupaten Sumbawa Propinsi Nusa Tenggara Barat merupakan salah satuu wilayah penghasil kedelei. Namun, komoditas kedelai di Kabupaten Sumbawa pada tahun 2020 mengalami penurunan yang sangat signifikan, hal ini ditandai dari menurunnya luas panen sebesar 567 Ha (-56,19%) dibandingkan tahun sebelumnya, dimana pada tahun 2020 seluas 442 Ha dan tahun 2019 seluas 1.009 Ha, akan tetapi dalam rentang waktu 2016-2020 terjadi peningkatan rata-rata luas panen sebesar 92,53% pertahun. Produksi kedelai, mengalami penurunan sebesar 675 Ton (-51,60%), dengan total produksi pada tahun 2020 sebesar 633 Ton dan tahun 2019 sebesar 1.308 Ton, akan tetapi dalam rentang waktu 2016-2020. Rata-rata meningkat sebesar 68,36% pertahun. Produktivitas kedelai

meningkat sebesar 1.36 kw/ha (10,47%) dibandingkan tahun sebelumnya, dimana produktivitas kedelai pada tahun 2020 sebesar 12,96 kw/ha dan tahun 2019 sebesar 14,32 kw/ha (Bapelitbangda, 2021).

P-ISSN: 2807-7369

E-ISSN: 2807-3835

Kesuburan tanah merupakan faktor penting bagi tanaman untuk dapat hidup dan berproduksi dengan baik, kondisi kesuburan tanah yang rendah, disebabkan oleh rendahnya bahan organik dan intensitas hujan yang rendah serta evaporasi yang tinggi menyebabkan pengembangan kedelei menjadi terkendala. Upaya mengembalikan kesehatan tanah dan mempertahankan keberlanjutan ekosistem pertanian, sangat memerlukan sistem pertanian ramah lingkungan dengan menjaga keselarasan komponen ekosistem secara berkesinambungan dan lestari (Erwiyono *et al.*, 2019), sehingga sangat diperlukan teknologi alternatif lain yang dapat mengatasi kendala tersebut.

Penggunaan pupuk kandang sapi mampu memperbaiki lingkungan tanah, sehingga mampu memberikan suplai unsur hara makro dan mikro, memberikan nhormon tumbuh dari golongan auksin, sitokinin yang juga dapat meningkatkan produksi tanaman. Auksin yang terdapat pada atonik bahkan dapat meningkatkan pertumbuhan tanaman (Purbaet *et al.*, 2018). Novitasari *et al.* (2021) unsur hara yang terdapat pada pupuk kandang sapi yaitu nitrogen (N) 1,53 %, fosfor (F) 1,18 %, dan kalium (K) 1,30 % kandungan tersebut dapat meningkatkan pertumbuhan tanaman. Hasil penelitian Meta *et al.*, (2021) menjelaskan bahwa perlakuan dosis pupuk kandang sapi 30 ton/ha memberikan hasil bobot polong per tanaman, bobot polong per petak, dan bobot polong per ha memperoleh hasil yang maksimal.

Selain menggunakan pupuk kandang kotoran sapi, mulsa jerami padi menjadi salah satu alternatif dalam meningkatkan kesuburan dan ketersediaan lengas tanah. Pemberian bahan penutup tanah seperti mulsa dapat menjaga kelembaban dan mencegah tumbuhnya berbagai jenis gulma dan penyakit, sehingga tanaman dapat tumbuh dan berkembang dengan baik (Setiyaningrum *et al.*, 2019).

Pemberian mulsa jerami merupakan komponen penting dalam upaya peningkatan produksi tanaman (Baka *et al.*,2020). Menggunakan mulsa jerami padi dapat membantu melindungi tanah dari air hujan. Mulsa jerami padi lebih ekonomis, membantu penyerapan air dalam tanah. Mulsa jika terurai akan meningkatkan kadar organik tanah (Setiyaningrum *et al.*,2019). Jerami padi mengandung unsur N sekitar 40%, P 30-35%, K 80-85%, dan unsur S 40-45%. Manfaat pemulsaan di antaranya yaitu mengurangi pertumbuhan gulma, memperkuat agregat tanah, mengurangi erosi, mencegah penguapan, dan memperbaiki sifat, fisik tanah (Baka *et al.*,2020).

Penerapan pupuk kandang dan mulsa sudah banyak dilakukan oleh petani, namun informasi terkait pengaruh pupuk kandang dan mulsa jerami terhadap pertumbuhan dan hasil kedelei edamame masih minim, sehingga penelitian ini sangat penting dilakukan dalam upaya meningkatkan produksi kedelei dan pemanfaatan pertanian secara berkelanjutan.

Tujuan dari penelitian ini adalah untuk mengetahui pengaruh pemberian pupuk kandang kororan sapi dan mulsa Jerami terhadap pertumbuhan dan hasil kedelai edamame (*Glycine max L. Merr*).

2. METODE PENELITIAN

Tempat dan Waktu Penelitian

Penelitian ini dilaksanakan dilahan tegalan Desa Moyo Kecamatan Moyo Hilir Kabupaten Sumbawa Provinsi Nusa Tenggara Barat dari bulan April sampai Juni 2023.

Alat dan bahan Penelitian

Adapun alat dan bahan yang digunakan dalam penelitian ini adalah meteran, cangkul dan sekop, a1at tugal, bollpoin, sepidol dan buku, hand spayer, ember, gembor, timbangan, ayakan, karung berfungsi, kamera sebagai alat untuk mendokumentasikan hasil penelitian. Bahan yang digunakan dalam penelitian ini adalah benih edamame varietas Ryoko, pupuk kandang dan mulsa jerami sebagai bahan tambahan yang digunakan dalam penelitian ini, air untuk menyiram tanaman budidaya dan pegencer pupuk cair, tali rapiah yang berwarna terang digunakan sebagai penanda dalam pengukuran petak, screen net sebagai pelindung tanaman penelitian dari hama yang akan menyerang tanaman, bambu berfungsi sebagai tiang penanda tanaman sampel dan papan label berfungsi sebagai papan nama atau penanda untuk masing-masing perlakuan. Penelitian ini dilaksanakan dilahan tegalan Desa Moyo Kecamatan Moyo Hilir Kabupaten Sumbawa Provinsi Nusa Tenggara Barat dari bulan April sampai Juni 2023.

P-ISSN: 2807-7369

E-ISSN: 2807-3835

Rancangan percobaan

Rancangan percobaan yang digunakan dalam penelitian ini adalah rancangan acak kelompok (RAK) faktorial yang terdiri dari dua faktor yaitu, faktor pertama pupuk kandang (S) dan faktor kedua mulsa jerami (M).

Faktor pertama penggunaan pupuk kandang kotoran sapi 20 ton/hektar (S).

SO: Tanpa pupuk kandang kotoran sapi

S1 : 20 Ton/Ha pupuk kandang kotoran sapi setara dengan 18 kg/petak (Pembudi.,2013)

S2 : 30 Ton/Ha pupuk kandang kotoran sapi setara dengan 27 kg/petak (Purba.,2018)

Faktor kedua penggunaan mulsa jerami 6 Ton/Hektar (M)

M0 : Tanpa mulsa Jerami

M1 : 6 Ton/Ha mulsa jerami setara dengan 5,4 kg/petak (Harsono, 2012)
 M2 : 8 Ton/Ha mulsa jerami setara dengan 7,2 kg/petak (Zainal *et.al*, 2014)

Kedua faktor tersebut di kombinasikan sehingga diperoleh sembilan kombinasi perlakuan sebagai berikut:

S0M0 : Tanpa pupuk kandang kotoran sapi + Tanpa mulsa Jerami S0M1 : Tanpa pupuk kandang kotoran sapi + 6 Ton/Ha mulsa jerami S0M2 : Tanpa pupuk kandang kotoran sapi + 8 Ton/Ha mulsa jerami S1M0 : 20 Ton/Ha pupuk kandang kotoran sapi + Tanpa mulsa jerami S1M1 : 20 Ton/Ha pupuk kandang kotoran sapi + 6 Ton/Ha mulsa jerami : 20 Ton/Ha pupuk kandang kotoran sapi + 8 Ton/Ha mulsa jerami S1M2 S2M0 : 30 Ton/Ha pupuk kandang kotoran sapi + tanpa mulsa jerami S2M1 : 30 Ton/Ha pupuk kandang kotoran sapi + 6 Ton/Ha mulsa jerami S2M2 : 30 Ton/Ha pupuk kandang kotoran sapi + 8 Ton/Ha mulsa jerami Masing – masing kombinasi diulang sebanyak tiga kali sehingga akan diperoleh 27 petak percobaan.

Metode Pengambilan Sampel

Metode yang digunakan dalam pengambilan sampel adalah metode sampel sistematik (Systematic sampling), penentuan sampel awal setiap titik dilakukan dengan cara undian atau lotre, dengan interval pengambilan sampai yaitu lima secara berurutan. Jumlah tanaman sampel adalah 20 tanaman yaitu 20% dari 100 populasi tanaman kedelai edamame per petak perlakuan.

Analisis Data

Data hasil pengamatan variable tanaman dilapangan selanjutnya dianalisis menggunakan Analisis Varians (Anova) pada taraf 5%. Apabila terdapat perbedaan yang nyata (F hit > F tab) maka dilakukan uji lanjut Duncan Multiple Range Test (DMRT) pada taraf nyata 5%..

Variabel Pengamatan dan Cara Pengamatan

Parameter penelitian yang diamati dalam penelitian ini terdiri dari peubah pertumbuhan dengan variabel pengamatan tinggi tanaman (cm), dan jumlah daun (helai). Peubah hasil terdiri dari jumlah polong per tanaman (buah), jumlah polong berisi pertanaman (buah), barat polong berisi pertanaman (g), hasil polong per petak (kg), hasil per hektar (ton).

3. HASIL DAN PEMBAHASAN

Parameter peubah Pertumbuhan

Peubah pertumbuhan terdiri dari dua paremeter meliputi tinggi tanaman dan jumlah daun tanaman kedelai.

Tinggi Tanaman

Tinggi Tanaman Kedelai Edamame (Glycine max L Merr) Terhadap Penggunaan Pupuk Kandang Sapi

Hasil pengamatan pengaruh perlakuan pupuk kandang sapi pada parameter tinggi tanaman pada umur 20,30 dan 40 HST (Hari Setelah Tanam).

Tabel 1. Rerata Tinggi Tanaman Kedelai Edamame (*Glycine max L Merr*)
Terhadap Penggunaan Pupuk Kandang Sapi Pada Umur 20,30
dan 40 HST (Hari Setelah Tanam).

D. J.I.		Tinggi Tana	man (cm)	
Perlakuan —	10 (HST)	20 (HST)	30 (HST)	40 (HST)
S2	11,67a	18.38a	27.98a	33.82a
S 1	11,67a	17.99ba	27.36a	32.89b
S0	12.00a	17.38b	27.40a	32.11c
DMRT 5%	-	0.751	-	0.276

HST : Hari Setelah Tanam

: Data Diolah Tahun 2023

Ketarangan : Angka yang diikuti dari huruf yang sama pada kolom yang sama tidak berbeda nyata berdasarkan uji DMRT 5%

Sumber

Hasil analisis menunjukan bahwa pupuk kandang kotoran sapi menunjukan hasil yang berbeda nyata pada perlakuan tinggi tanaman umur 20, dan 40 HST (Hari Setelah Tanaman), namun tidak berbeda nyata pada umur 10 dan 30 HST, hal ini diduga disebabkan oleh hujan deras pada umur 20 (setelah pengukuran parameter) dan 30 HST. Hujan deras menyebabkan unsur hara pada perlakuan pupuk kandang sapi mengalami pencucian dan terbawa oleh oleh air hujan. Tamba, (2017) bahwa perlakuan pupuk kandang sapi 40 ton/Ha berbeda nyata terhadap tinggi tanaman. Pupuk kandang sapi mampu memperbaiki struktur tanah, meningkatkan ketersediaan unsur hara yang dapat meningkatkan pertumbuhan dan produksi tanaman.

P-ISSN: 2807-7369

E-ISSN: 2807-3835

Tinggi Tanaman Kedelai Edamame (Glycine max L Merr) Terhadap Penggunaan Mulsa Jerami

Hasil pengamatan pengaruh perlakuan mulsa jerami pada parameter tinggi tanaman pada umur 20,30 dan 40 HST (Hari Setelah Tanam).

Tabel 2. Rerata Tinggi Tanaman Kedelai Edamame (*Glycine max L Merr*)
Terhadap Penggunaan Mulsa Jerami Pada Umur 20,30 dan 40
HST (Hari Setelah Tanam).

D 11		Tinggi Tana	man (cm)	
Perlakuan -	10 (HST)	20 (HST)	30 (HST)	40 (HST)
M2	11.83a	17.88a	27.35a	33.02a
M1	11.67a	17.96a	27.79a	32.95a
M0	11.83a	17.91a	27.59a	32.82a
DMRT 5%		-	-	-

HST : Hari Setelah Tanam Sumber : Data Diolah Tahun 2023

Keterangan : Angka yang diikuti dari huruf yang sama pada kolom yang sama Tidak berbeda nyata berdasarkanuji DMRT 5%

Hasil analisis menunjukan bahwa pemberian mulsa jerami menunjukan hasil yang tidak berbeda nyata pada parameter tinggi tanaman umur 10, 20, 30 dan 40 HST (Hari Setelah Tanaman). Hal ini diduga disebabkan kerena kelembaban dan temperatur tanah yang tinggi pada siang hari, akibatnya peranan mulsa sebagai pengatur kelembaban dan suhu tanah tidak menunjukan peranan yang maksimal. Nugroho *et al.*,(2020) menyatakan ketersediaan pupuk organik dari limbah tanaman menciptakan kelembaban tanah dan kondisi yang sesuai untuk berkembangnya hewan tanah.

Tinggi Tanaman Kedelai Edamame (Glycine max L Merr) Terhadap Penggunaan Pupuk Kandang Sapi

Hasil pengamatan pengaruh perlakuan pemberian mulsa jerami terhadap pertumbuhan kedelai edamame (Glycine max L merr) pada parameter

tinggi tanaman kedelai edamame umur 10, 20, 30, dan 40 hari setelah tanam disajikan sebagai berikut:

Tabel 3. Pengaruh pemberian pupuk kandang dan mulsa jerami terhadap pertumbuhan tinggi tanaman (cm) kedelai edamame (Glycine max L merr)

P-ISSN: 2807-7369

E-ISSN: 2807-3835

	Tinggi Tanaman (cm)				
Perlakuan –	10 (HST)	20 (HST)	30 (HST)	40 (HST)	
S2M2	12.00a	18,63a	27.92a	33.73a	
S2M1	11.50a	18,39a	27.95a	33.87a	
S2M0	11.50a	18,12ab	28,02a	33.86a	
S1M2	12.00a	18,18ab	26,58b	33.11b	
S1M1	11.00a	17,95ab	27.91a	32.82b	
S1M0	12.00a	17,85ab	27.58ab	32.62bc	
S0M2	11.50a	16.83b	27.53ab	32.20cd	
S0M1	12.50a	17.53ab	27.51ab	32.13cd	
SOM0	12.00a	17.75ab	27,16ab	31.99d	
DMRT 5%	-	1.48	1.30	2.76	

HST : Hari Setelah Tanam Sumber : Data Diolah Tahun 2023

Keterangan : Angka yang diikuti dari huruf yang sama pada kolom yang sama Tidak

berbeda nyata berdasarkanuji DMRT 5%

Hasil analisis perlakuan kombinasi pupuk kandang sapi dan mulsa Jerami pada parameter rerata tinggi tanaman menunjukkan hasil tidak berbeda nyata pada umur 10 HST, namun berbeda nyata pada umur 20, 30 dan 40 HST. Pada umur 10 HST menunjukkan hasil tidak berbeda nyata, diduga disebabkan oleh kedalaman penanaman kedelai edamame sehingga menghambat pertumbuhan tanaman. Tanaman *Leguminosae* membutuhkan fosfat dalam jumlah yang cukup bagi pertumbuhan agar dapat memacu pembentukan bintil akar. Selanjutnya bintil akar akan bersembiosis dengan bakteri pemfiksasi nitrogen sehingga menambah ketersediaan nitrogen bagi tanaman *Leguminosae* (Ramdani *et al.*,2018).

Jumlah Daun

Hasil pengamatan pengaruh perlakuan pemberian pupuk kandang dan mulsa jerami terhadap pertumbuhan dan hasil kedelai edamame (Glycine max L merr) pada parameter jumlah daun tanaman kedelai edamame umur 10, 20, 30, dan 40 hari setelah tanam disajikan sebagai berikut:

Tabel 4 Rerata Jumlah Daun Kedelai Edamame (*Glycine max L Merr*)
Terhadap Penggunaan Pupuk Kandang Sapi Pada Umur 20,30
dan 40 HST (Hari Setelah Tanam).

		Jumlal	n Daun	
Perlakuan -	10(HST)	20 (HST)	30 (HST)	40 (HST)
S2	2.33a	6.44a	13.44a	22.89a

DMRT 5%	-	-	-	-
S0	2.22a	6.44a	13.22a	22.89a
S 1	2.55a	6.67a	13.56a	23.00a

E-ISSN: 2807-3835

HST : Hari Setelah Tanam Sumber : Data Diolah Tahun 2023

: Angka yang diikuti dari huruf yang sama pada kolom yang sama Tidak Keterangan

berbeda nyata berdasarkanuji DMRT 5%

Hasil analisis menunjukan bahwa pupuk kandang kotoran sapi menunjukan hasil yang tidak berbeda nyata pada perlakuan jumlah daun pada umur 10, 20,30, dan 40 HST. Hal ini diduga karena pupuk kandang sapi yang slow realease (lambat terurai). Nuro et al.,(2016) menjelaskan bahwa pupuk organik memiliki sifat lambat tersedia atau slow realease, dilepas secara perlahan-lahan dan terus menerus dalam jangka waktu yang lebih lama sehingga kehilangan unsur hara akibat pencucian air lebih kecil.

Tabel 5 Rerata Jumlah Daun Kedelai Edamame (Glycine max L Merr) Terhadap Penggunaan Mulsa Jerami Pada Umur 20,30 dan 40 HST (Hari Setelah Tanam).

		Jum	lah Daun	
Perlakuan	10(HST)	20 (HST)	30 (HST)	40 (HST)
M2	2.33a	6.68a	13.56a	23.33a
M1	2.33a	6.56a	13.44a	22.89a
M0	2.44a	6.44a	13.33a	22.56a
DMRT 5%	-	-	-	-

Hasil analisis menunjukan bahwa mulsa Jerami menunjukan hasil yang tidak berbeda nyata pada perlakuan jumlah daun pada umur 10, 20,30, dan 40 HST. Hal ini diduga karena proses evapotranspirasi yang tinggi dan kadar air yang rendah menyebabkan tanaman kedelai mengalami pertumbuhan jumlah daun yang kurang maksimal. Marliah et al.,(2018) menjelaskan bahwa mulsa organik mampu mengurangi proses terjadinya evaporasi yang berlebihan dan menjaga kelembaban tanah sehingga tanaman mampu tumbuh dengan baik.

Tabel 6. Kedelai edamame (helai) pengaruh pemberian pupuk kandang dan mulsa jerami terhadap pertumbuhan jumlah daun kedelai edamame (Glycine max L merr)

Perlakuan	Jumlah Daun				
	10 (HST)	20 (HST)	30 (HST)	40 (HST)	
S2M2	2.37a	6.00a	13,66a	23,66a	
S2M1	2.33a	6.66a	13.00a	22,66a	
S2M0	2.33a	6.66a	13.66a	22,33a	
S1M2	2.67a	7,00a	13.33a	24,33a	
S1M1	2.67a	6.33a	13.66a	23,00a	
S1M0	2.33a	6.66a	13,66a	21,66a	
S0M2	2.33a	6.33a	13,00a	22,00a	
S0M1	2.00a	6.66a	13,33a	22.00a	

S0M0	2.67a	6.33a		13.00a	24,66a
DMRT 5%	-	-	-	-	
HST	: Hari Setelah Tan	am			
Sumber	: Data Diolah Tah	un 2023			
Keterangan	0 0	uti dari huruf yang erdasarkanuii DMI	-	a kolom yang sa	ama Tidak

E-ISSN: 2807-3835

Tabel 6. Kedelai edamame (helai) pengaruh pemberian pupuk kandang dan mulsa jerami terhadap pertumbuhan dan hasil kedelai edamame (Glycine max L merr) Jumlah daun menunjukkan bahwa untuk seluruh perlakuan tidak memberikan hasil yang berbeda nyata terhadap jumlah daun. Hal ini diduga karena penggunaan mulsa jerami pada tanaman kedelai mampu memelihara suhu dan kelembaban tanah serta memelihara kandungan organik tanah. Dinas Pertanian, (2019) menjelaskan bahwa di indonesia rata-rata kandungan hara Jerami padi adalah 0,4 % N, 0,02% P,1,4 % K, dan 5,6 Si. Untuk setiap 1 ton gabah tanaman padi di hasilkan pula 1,5 ton Jerami yang mengandung 9 kg N, 2 kg P, 25 kg K, 2 kg S, Si 6 kg,Ca, dan 2 kg Mg.

Peubah Hasil Tanaman

Peubah Hasil Tanaman Kedelai Edamame Terhadap Pengaruh Perlakuan Pupuk Kandang Sapi

Tabel 7 Parameter Jumlah Polong (Buah) Dan Jumlah polong Berisi (Buah) Kedelai Edamame Terhadap pemberian Pupuk Kandang Sapi.

Perlakuan	Jumlah Polong (Buah)	Jumlah Polong Berisi (Buah)
S2	16.67a	15.33a
S 1	15.67ab	14.22a
S0	14.4444b	12.78a
DMRT 5%	1.865	-

HST : Hari Setelah Tanam Sumber : Data Diolah Tahun 2023

Keterangan : Angka yang diikuti dari huruf yang sama pada kolom yang sama Tidak

berbeda nyata berdasarkanuji DMRT 5%

Hasil analisis menunjukan bahwa pemberian pupuk kandang sapi menunjukan hasil yang berbeda nyata pada perlakuan jumlah polong (buah). Rerata jumlah polong (buah) tertinggi terdapat pada perlakuan S2 (pupuk kandang kotoran sapi 30 Ton/Ha). Hal ini diduga kerena unsur hara pupuk kandang kotoran sapi sangat cukup dalam menunjang jumlah polong tanaman. Meta *et al.*,(2021) menyatakan perlakuan dosis pupuk kandang kotoran sapi 30 Ton/Ha memberikan hasil jumlah polong, bobot polong per tanaman, bobot polong per petak dan polong per ha memperoleh hasil yang maksimal.

Peubah Hasil Tanaman Kedelai Edamame Terhadap Pengaruh Perlakuan Mulsa Jerami

Tabel 8. Parameter Jumlah Polong (Buah) Dan Jumlah Polong Berisi (Buah) Kedelai Edamame Terhadap pemberian Mulsa Jerami

E-ISSN: 2807-3835

нст	. Hard Catalah Tanam			
DMRT 5%	-		-	
M 0	14.89a		13.56a	
M 1	15.56a		13.78a	
M2	16.33a		15.00a	
Perlakuan	Jumlah Polong (Buah)	Jumlah (Buah)	Polong	Berisi

HST : Hari Setelah Tanam Sumber : Data Diolah Tahun 2023

Keterangan : Angka yang diikuti dari huruf yang sama pada kolom yang sama

Tidak berbeda nyata berdasarkanuji DMRT 5%

Hasil analisis menunjukan bahwa pemberian mulsa jerami menunjukan hasil yang tidak berbeda nyata pada perlakuan jumlah polong (buah) dan jumlah polong berisi (buah). Hal ini diduga karena pemberian mulsa Jerami yang cupuk sehingga mampu memenuhi kebutuhan unsur hara yang dibutuhkan oleh tanaman kedelai. Syaifudin *et al.*,(2018) menjelaskan bahwa unsur nitrogen yang terserap tanaman awalnya tersimpan pada batang dan juga daun, kemudian setelah terbentuk polong disalurkan ke bagian kulit polong. Sementara itu, pemberian pupuk dengan kandungan unsur P yang cukup memberikan peran pada periode pembungaan, pertumbuhan biji, dan pemasakan biji.

Jumlah Polong Per Tanaman dan Jumlah Polong Berisi Per Tanaman

Pencampuran pupuk kandang kotoran sapi dengan mulsa jerami mempengaruhi jumlah polong (buah) dan jumlah polong berisi (buah) kedelai edamame (Tabel 9).

Tabel 9. Parameter jumlah polong (buah) dan jumlah polong berisi (buah) kedelai edamame terhadap pemberian pupuk kandang dan mulsa jerami terhadap pertumbuhan dan hasil kedelai.

Perlakuan	Jumlah polong (buah)	Jumlah polong berisi (buah)
S2M2	17,66a	16,33a
S2M1	16,33ab	14,33a
S2M0	16,00ab	15,33a
S1M2	16,33ab	15,66a
S1M1	15,66ab	14,00a
S1M0	15,00ab	13,00a
S0M2	15,00ab	13,00a
S0M1	14,66ab	13,00a
S0M0	13,66b	12,33a
DMRT 5 %	1.86	-

Hasil analisis menunjukkan bahwa perlakuan kombinasi pupuk kandang kotoran sapi dengan mulsa jerami menunjukkan hasil yang berbeda nyata pada parameter jumlah polong, namun tidak berbeda nyata pada paremeter jumlah polong berisi, hal ini disebabkan oleh pemberian pupuk kandang sapi dan mulsa Jerami berperan dalam merangsang terbentuknya nodul. Nodul membantu penyediaan N dan

unsur ini memicu pembentukan protein dan protoplasma serta klorofil yang pada akhirnya mampu membantu proses pembentukan polong. Suplai pupuk yang diberikan dapat membantu pertumbuhan pada fase vegetatif dan generatif (pembentukan polong dan pembentukan biji) karena pupuk kandang sapi mengandung nitrogen yang berfungsi sebagai penyusun protein (Maitasari *et al.*,2017).

P-ISSN: 2807-7369

E-ISSN: 2807-3835

Berat Polong Berisi Per Tanaman dan Berat 1 Polong Berisi Per Tanaman

Pencampuran pupuk kandang kotoran sapi dengan mulsa jerami mempengaruhi berat polong berisi pertanaman dan berat 1 polong berisi per tanaman kedelai (Tabel 10).

Berat Polong Berisi Per Tanaman dan Berat 1 Polong Berisi Per Tanaman Tabel 10. Parameter berat polong berisi per tanaman dan berat 1 polong berisi per tanaman terhadap pencampuran pupuk kandang kotoran sapi dengan mulsa jerami.

NO	ioran sapi ucngan musa jeran	111.
Perlakuan	Rerata Berat Polong Berisi	Berat Satu (1) Polong Berisi
	Per Tanaman (g)	Per Tanaman (g)
S2M2	14.96a	3.28a
S2M1	14.60a	3.27a
S2M0	15.10a	3.34a
S1M2	14.45a	2.71ab
S1M1	14.51a	2.72ab
S1M0	14.88a	3.33a
S0M2	14.09a	3.38a
S0M1	14.15a	3.02ab
S0M0	14.79a	2.29b
DMRT 5 %	-	4.62

HST

: Hari Setelah Tanam

Sumber

: Data Diolah Tahun 2023

Keterangan : Angka yang diikuti dari huruf yang sama pada kolom yang sama Tidak berbeda nyata berdasarkanuji DMRT 5%

Tabel 10 Pengamatan rerata berat polong berisi per tanaman menunjukkan kecenderungan berat tertinggi terdapat pada perlakuan S2M0 (pupuk kandang kotoran sapi 30 ton/Ha dengan tanpa mulsa jerami) dan yang terendah terdapat pada perlakuan kontrol S0M2 tanpa pupuk kandang kotoran sapi dan 8 ton/Ha mulsa jerami. Pemberian pupuk kandang 30 ton/Ha mampu memberikan hasil terbaik pada berat polong berisi per tanaman. Heriyanto, (2016) menyatakan bahwa pemberian pupuk kandang dapat meningkatkan hasil panen pada tanaman. Pupuk kandang kotoran sapi memiliki fungsi menyuburkan dan memperbaiki struktur tanah, mampu menekan pertumbuhan mikroba pathogen, serta mereduksi penggunaan pupuk anorganik tanpa mengurangi produktivitas tanaman (Azizah, 2021).

Hasil Per Petak dan Hasil Per Hektar

Pemberian pupuk kandang kotoran sapi dengan mulsa jerami mempengaruhi hasil per petak (kg) dan hasil per hektar (ton) kedelai edamame (Tabel 11).

Tabel 11. Parameter Hasil Per Petak (kg) dan Hasil Per Hektar (Ton) Kedelai Edamame Terhadap Pemberian Pupuk Kandang Sapi.

Perlakuan	Hasil polong Per Petak (kg)	Hasil Per Hektar (Ton)
	1 6	` '

DMRT 5 %	0.126	0.235	
S0	4.00889c	4.4500c	
S 1	4.38667b	4.8700b	
S2	5.00778a	5.4733a	

E-ISSN: 2807-3835

HST : Hari Setelah Tanam Sumber : Data Diolah Tahun 2023

Keterangan : Angka yang diikuti dari huruf yang sama pada kolom yang sama

Tidak berbeda nyata berdasarkanuji DMRT 5%

Hasil analisis menunjukan bahwa parameter hasil per petak (kg) dan per hektar (ton) kedelai edamame terhadap pemberian pupuk kandang kotoran sapi menunjukan hasil berbeda nyata. Hasil pengamatan pemberian pupuk kandang kotoran sapi menunjukan hasil polong per petak (kg) tertinggi terdapat pada perlakuan S2 (pupuk kandang kotoran sapi 30 Ton/Ha) dan hasil per hektar dengan hasil tertinggi terdapat pada perlakuan S2 (pupuk kandang kotoran sapi 30 Ton/Ha). Hal ini menunjukan bahwa dengan pemberian pupuk kandang sapi 30 to/ha mampu memenuhi unsur hara yang di butuhkan oleh tanaman. Fajrin *et al.*,(2014) menyatakan pupuk kandang kotoran sapi yang digunakan pada tanaman kedelai edamame berpengaruh terhadap parameter pertumbuhan seperti, tinggi tanaman, jumlah cabang, jumlah daun, berat basah berangkasan, berat kering berangkasan, serta parameter produksi seperti berat polong, dan total jumlah polong per tanaman, berat dan jumah polong berisi per tanaman, serta berat polong per luas tanah.

Parameter Hasil Per Petak (kg) dan Hasil Per Hektar (Ton) Kedelai Edamame Terhadap Pemberian Mulsa Jerami

Perlakuan	Hasil polong Per Petak (kg)	Hasil Per Hektar (Ton)
M2	4.60889a	5.0300a
M1	4.44778b	4.9378b
M0	4.34667c	4.8256c
DMRT 5 %	0.126	0.235

Hasil analisis parameter hasil per petak (kg) menujukan hasil berbeda nyata dan per hektar (ton) memberikan hasil tidak berbeda nyata. Hasil

pengamatan polong per petak (kg) pemberian mulsa jerami menunjukan hasil tertinggi terdapat pada perlakuan M2 (mulsa Jerami 8 Ton/Ha) dan hasil per hektar tidak berbeda nyata dengan hasil tertinggi terdapat pada perlakuan M2 (mulsa Jerami 8 Ton/Ha). Hal ini diduga pemberian mulsa jerami menjaga kelembaban dan suhu tanah. Tersedianya air yang cukup akan meningkatkan proses fisiologis tanaman, dan meningkatkan produksi tanaman. Dengan aplikasi mulsa jerami, suhu di sekitar tanaman lebih rendah pada siang hari dan penguapan rendah untuk fotosintesis yang baik. Fotosintesis yang tepat menghasilkan fotosintat yang tinggi dan pertumbuhan (Jamili *et al.*,2017).

Parameter hasil per petak (kg) dan hasil per haktar (ton) kedelai edamame terhadap pemberian pupuk kandang kotoran sapi dengan mulsa jerami.

PERLAKUAN	Hasil Polong per petak (kg)	Hasil per Hektar (ton)
S2M2	5.11a	5.41ba
S2M1	5.01a	5.56a
S2M0	4.91a	5.45ba
S1M2	4.59b	5.09bc
S1M1	4.35c	4.83cd
S1M0	4.23c	4.69cde
S0M2	4.13cd	4.59de
S0M1	3.99de	4.43de
S0M0	3.90e	4.33e
DMRT 5 %	1.26	2.35

E-ISSN: 2807-3835

Pada Tabel di atas menunjukkan bahwa paremeter hasil per petak (kg) dan per hektar (ton) kedelai edamame terhadap pemberian pupuk kandang kotoran sapi dan mulsa jerami menunjukkan hasil yang berbeda nyata. Pengamatan hasil per petak menunjukkan rerata hasil tertinggi terdapat pada perlakuan S2M2 (30 ton/Ha pupuk kandang kotoran sapi dengan menggunakan mulsa Jerami 8 ton/Ha) yaitu 5,11 kg per petak atau setara dengan 5,41 ton/hektar. Hasil terandah terdapat pada perlakuan kontrol S0M0 yaitu tanpa menggunakan pupuk kandang kotoran sapi dan tanpa mulsa jerami dengan hasil 3.90 kg per petak atau setara dengan 4,33 ton/hektar. Hal ini dikarenakan pemberian pupuk kandang kotoran sapi dengan perlakuan 30 ton/Ha mampu memberikan hasil terbaik untuk tanaman kedelai edamame.

4. KESIMPULAN

Berdasarkan hasil pembahasan, maka kesimpulan dari penelitian ini sebagai berikut:

- 1. Perlakuan S2 (30 ton/ha pupuk kandang sapi) berpengaruh nyata terhadap pertumbuhan tinggi tanaman pada umur 20, dan 40 HST.
- 2. Perlakuan Pengaruh pemberian pupuk kandang sapi dengan mulsa jerami memberikan pengaruh nyata terhadap pertumbuhan tinggi tanaman pada umur 20, 30, 40 hari setelah tanam (HST). Hasil terbaik jumlah daun yaitu kecenderungan pada perlakuan S1M2 (Pupuk kandang kotoran sapi 18 kg/petak dengan mulsa jerami 7,2 kg/petak).
- 3. Perlakuan S2 (30 ton/ha pupuk kandang sapi) berpengaruh nyata terhadap jumlah polong tanaman kedelai edamame dan hasil polong per petak dan hasil per hektar.
- 4. Perlakuan M2 (8 ton/ha mulsa Jerami) berpengaruh nyata terhadap hasil polong per petak dan hasil polong per hektar dan Perlakuan S2M2 (30 ton/ha pupuk kandang sapi dengan 8 ton/ha mulsa jerami) berpengaruh nyata terhadap parameter jumlah polong per tanaman, berat satu polong per tanaman dan hasil polong per petak.
- 5. Perlakuan S2M1 (30 ton/ha pupuk kandang sapi dengan 6 ton/ha kg/petak mulsa jerami) memberikan hasil per hektar (5.56 ton/ha).

5. DAFTAR PUSTAKA

Azizah, NP., Sunawan, S., & Arfarita, N. (2021). Aplikasi Lapang Pupuk Hayati Vp3 Dibandingkan Dengan Empat Macam Pupuk Hayati Yang Beredar Di Pasaran Terhadap Produksi Tanaman Kedelai (Glycine max L.). Folium Jurnal Ilmu Pertanian, 5(1), 26. https://doi.org/10.33474/folium.v5i1.10359

P-ISSN: 2807-7369

E-ISSN: 2807-3835

- Badan Pusat Statistik. 2021. Produksi Kedelai Edamame kabupaten Sumbawa..
- Baka, Y.N., Y.B. Tematan, dan Y.N. Bunga. 2020. Pengaruh Pemberian Mulsa Jerami Padi dan Pupuk Kandang Ayam terhadap Produksi Bawang
- Budiana Fitria, A. Kusumawardani, W. Ayu, I.W. 2021. Aplikasi Beberapa Dosis Kompos Hayati dan Mulsa Jerami Padi pada Tanaman Kedelai Edamame (Glycine Max L., Merr.) pada Lahan Sawah Tadah Hujan. Jurnal Agroteknologi. 1(1).
- Departemen Pertanian. 2020. Outlook Kedelai. Komoditas Pertanian Subsektor Tanaman Pangan. Kementrian Pertanian. Jakarta.
- Mahendra, A.Y. Oktarina. 2017. Respon Kedelai Edamame (Glycine Max, L Merill) Terhadap Waktu Aplikasi dan Konsentrasi Pestisida Nabati Gadung. Agritrop. Vol. 15 (1): 44 54.
 - Merah (Allium cepa L. var. ascalonicum). Spizaetus: Jurnal Biologi dan Pendidikan Biologi. 1(2): 33-39.
- Meta, Sulistyawati, dan Sri Hariningsih Pratiwi, M. (2021). Pengaruh Pemberian Pupuk Kandang Sapi Terhadap Pertumbuhan Dan Hasil Tanaman Kacang Panjang (Vigna sinensis L.). AGRINULA: Jurnal Agroteknologi Dan Perkebunan groteknologi Merdeka Pasuruan, 5(Nomor 2, Desember 2021), 7–11.
- Novitasari, D. Caroline, J. 2021.Kajian Efektivitas Pupuk dari Berbagai Kotoran Sapi, Kambing dan Ayam.Seminar Teknologi Perencanaan Perancangan Lingkungan dan Infrastruktur Ii Ftsp Itat Surabaya.
- Novitasari, D. Caroline, J. 2021.Kajian Efektivitas Pupuk dari Berbagai Kotoran Sapi, Kambing dan Ayam.Seminar Teknologi Perencanaan Perancangan Lingkungan dan Infrastruktur Ii Ftsp Itat Surabaya.
- Nugraha, M.Y., M. Baskara, dan A. Nugroho. 2017. Pemanfaatan Mulsa Jerami Padi dan Herbisida pada Tanaman Jagung (Zea mays L.). Jurnal Produksi Tanaman. 5(1): 68-76.
- Nugroho. 2019. Uji Efektivitas Mulsa Daun Bambu Tali (Gigantochloa apus(Schult. & Schult. f.) Kurz) Terhadap Pertumbuhan Tanaman Tomat (Lycopersicum esculentum Mill.). Prosiding Seminar Nasional Perhimpunan Biologi Indonesia XXV 25-27 Agustus 2019.
- Purba, J. H., Parmila, I. P. and Sari, K. K. (2018) "Pengaruh Pupuk Kandang Sapi dan Jarak Tanam terhadap Pertumbuhan dan Hasil Kedelai (Glycine max L. Merrill) Varietas Edamame", Agricultural Journal, 1(2), pp. 69–81.